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ABSTRACT
Knowledge tracing is the task of understanding student’s knowl-
edge acquisition processes by estimating whether to solve the next
question correctly or not. Most deep learning-based methods tackle
this problem by identifying hidden representations of knowledge
states from learning histories. However, due to the sparse interac-
tions between students and questions, the hidden representations
can be easily over-fitted and often fail to capture student’s knowl-
edge states accurately. This paper introduces a contrastive learning
framework for knowledge tracing that reveals semantically similar
or dissimilar examples of a learning history and stimulates to learn
their relationships. To deal with the complexity of knowledge ac-
quisition during learning, we carefully design the components of
contrastive learning, such as architectures, data augmentationmeth-
ods, and hard negatives, taking into account pedagogical rationales.
Our extensive experiments on six benchmarks show statistically
significant improvements from the previous methods. Further anal-
ysis shows how our methods contribute to improving knowledge
tracing performances.

CCS CONCEPTS
• Social and professional topics → Student assessment; • Ap-
plied computing→ Learning management systems.

KEYWORDS
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Figure 1: Conceptual diagram of CL4KT. Once semanti-
cally similar or dissimilar learning histories are identified
through data augmentations, CL learns their representa-
tions to be close to each other for similar samples (blue
points) and to be far from dissimilar samples (red points).

1 INTRODUCTION
Over the past decades, the use of artificial intelligence (AI) tech-
niques to improve educational practices has grown exponentially.
The recent COVID-19 school closures have further accelerated this
adoption. The introduction of AI for education demands personal-
ized educational platforms that deliver a tailored curriculum to an
individual learner. Accordingly, intelligent tutoring systems (ITS)
have received significant attention in AI for education. The ability
to recognize each student’s current knowledge states and provide
appropriate questions to the students through the large-scale learn-
ing data obtained from the online learning environment is the key
to the success of ITS.

Knowledge tracing (KT), one of the fundamental tasks of ITS,
is to estimate the student’s knowledge states given the previous
learning interactions consisting of responses to questions over time.
Previous approaches [5, 28, 32, 45] have tried to capture an effective
representation of the knowledge state, which enables predicting fu-
ture responses to questions. While the existing methods of KT have
had some success in ITS, they still suffer from the sparse nature
of educational data. In the ITS environment, students are likely to
interact with only a limited number of questions because they are
apt to depend on the curriculum provided by the system. As a result,
the representations learned from the sparse dataset tend to be easily
biased or over-fitted, which hinders the accurate inference of latent
knowledge states. To compensate for the issue, recent studies have
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devised various ways, e.g., pre-trained embeddings [24] and com-
paring predicted probabilities of original and augmented samples
[21]. However, none of the previous attempts for enhancing the
representations adopts an end-to-end architecture to discriminate
instances based on low-dimensional latent vectors.

In this paper, we propose a contrastive learning (CL) framework
for KT, named CL4KT. The main idea of CL4KT is to learn effec-
tive representations by pulling similar learning histories together
and pushing dissimilar learning histories apart in representation
space. To encode the learning histories of students, we use multiple
Transformer [38] encoders: question and interaction encoders for
learning histories and a knowledge retriever predicting the response
on the following questions. When predicting the future response,
we use unidirectional encoders to prevent future information leak-
age. On the other hand, when learning contrastive representations,
we leverage bidirectional self-attentive encoders to summarize the
entire context of a learning history from both directions, which is in-
spired by [37]. Also, we design domain-specific data augmentation
methods tailored to reflect the semantics of each learning history.
In contrast to typical sequential prediction tasks using a single type
of tokens such as words or items, KT uses a learning history consist-
ing of two inter-dependent tokens (questions and responses). With
this in mind, we utilize four data augmentation methods and hard
negatives to reveal semantically similar and dissimilar learning
histories, and the contrastive loss stimulates learning their rela-
tionships. Figure 1 illustrates the CL in our method. By imposing
semantic relations on the representation space, CL4KT can learn
generalizable representations from sparse learning histories.

Our experiments extensively evaluate the proposed method
on six KT benchmarks: algebra05, algebra06, assistments09,
slepemapy, spanish, and statics. As a result, CL4KT shows con-
sistent and statistically significant performance improvements com-
pared to the previous KT methods in all the benchmarks. We also
provide ablation studies on the components of CL4KT, including
bidirectional encoders for CL, augmentation modules, and the use
of hard negatives, for understanding each contribution. Further
analysis demonstrates how CL4KT leads to better KT performances.

2 RELATEDWORK
2.1 Knowledge Tracing
Modeling the knowledge acquisition process is challenging due to
the complexity and heterogeneity of educational data [13, 14]. To
address this issue, numerous attempts have been made, including
probabilistic [5], logistic [1, 31], and deep learning-based models
[32, 40, 45]. Recently, deep learning for KT has been studied from
multiple aspects. Since the pioneering work of Piech et al. [32],
various strategies have been explored: e.g., application of Trans-
formers [3, 11, 28, 34] and the use of side information such as textual
contents [29, 36], temporal features [26, 39], and graph relations
between entities [27].

Although several KT methods have been introduced, they suffer
from the inherent sparsity issues on KT datasets, as mentioned in
the introduction. Liu et al. [24] and Lee et al. [21] tackle the prob-
lem by pre-training question embeddings and data augmentation,
respectively. In contrast, this paper addresses the issue with a CL
framework. Our work differs from the previous studies in several

respects. First, compared to Liu et al. [24], we exploit an end-to-end
architecture. Therefore, our method does not require any side in-
formation or domain knowledge which are often costly to gather
as well as multistage training schedules (such as pre-training then
fine-tuning). Secondly, unlike Lee et al. [21] utilizing only positively
augmented samples, our framework introduces negative samples
that play a pivotal role in devising effective self-supervised signals.
In addition, we exploit an instance discrimination approach based
on the latent space, not the observational space.

2.2 Contrastive Learning
CL is a special branch of self-supervised learning [23] and has
shown promising performances in diverse domains, including com-
puter vision (CV) [2, 12, 42], natural language processing (NLP)
[4, 9], and recommender systems (RecSys) [43, 44]. As revealed
by recent studies, tailored data augmentation methods to a spe-
cific task are crucial for the success of CL. Various augmentation
methods have been utilized: e.g., cropping, rotation, and color dis-
tortion of CV, and masking words or features of NLP and RecSys.
In contrast to typical sequential prediction tasks using a single type
of tokens such as words or items, this paper deals with student’s
learning history consisting of two kinds of inter-dependent tokens:
questions and responses. Due to this unique characteristic and the
discrete nature of the learning histories, we carefully design our
CL framework to devise meaningful self-supervised signals.

3 METHOD
Figure 2 provides an overview of CL4KT consisting of CL and
response prediction (RP) frameworks. This section starts with a
formal definition of KT tasks (§3.1). Next, we demonstrate the main
components of CL4KT, including the shared model architectures
(§3.2), the RP (§3.3), and the CL (§3.4). Then, we define the similar
or dissimilar learning histories (§3.5 and §3.6), specialized in KT
tasks. Finally, the learning objective of CL4KT (§3.7) is defined.

3.1 Problem Statement
The learning history of student u is defined as a sequence of in-
teractions, su = (su,1, su,2, ..., su,Tu ) where Tu is the length. For
simplicity, we omit the subscript u unless specified otherwise. Each
interaction consists of a tuple: st = (qt , rt ), where qt ∈ N+ is the
t-th question and rt ∈ {0, 1} is the response result; 1 is correct and
0 is incorrect. Given the sequence of interactions (s1, s2, ..., st ) and
the next question qt+1, KT aims to determine the probability of
answering the next question correctly:

r̂t+1 = p(rt+1 = 1|s1, s2, ..., st ,qt+1). (1)

To achieve this goal, most KT methods assume two hidden repre-
sentations, hQt and hSt , which condense a number of questions and
interactions respectively at time t . Using these representations, the
KT task is reformulated as follows:

r̂t+1 = f (hQ1:t+1, h
S
1:t ),

where hQt+1 = д
Q(q1:t+1) and hSt = д

S(s1:t ).
(2)

Here, дQ(·) and дS(·) are functions for identifying question-level
and interaction-level representations, respectively. Finally, f (·) is a
function providing the final prediction. It should be noted that f
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Figure 2: Overall architecture of CL4KT. The left side and the right side indicate the CL and RP frameworks, respectively. Note
that we use shared encoders, question encoder дQ (red) and interaction encoder дS (blue).

utilizes question representations hQ1:t+1 including the next question
qt+1 and interaction representations hS1:t up to the current step to
provide the response result on the next question, without seeing
the ground truth, rt+1.

3.2 Model Architecture
As shown in Figure 2, CL4KT includes two embedding layers and
two encoders, for both questions and interactions.

3.2.1 Embedding Layers. In the embedding layers, we create a ques-
tion embedding matrix EQ ∈ RM×d and an interaction embedding
matrix ES ∈ R2M×d , where d denotes the dimension of the embed-
dings andM indicates the number of questions. The two matrices
project the one-hot vectors to dense representations. Following the
previous studies on KT [32, 45], for a given interaction st = (qt , rt ),
let eQt = EQqt ∈ Rd and eSt = ESqt+M∗rt

∈ Rd be a question and an
interaction embedding vectors at each time t , respectively.

3.2.2 Encoder Architecture. To encode a series of questions and
interactions, we employ two Transformer encoders [38]: a question
encoder дQ and an interaction encoder дS. For a given sequence
of question embeddings, eQ1:t , the question encoder дQt learns the
question representation; hQt = д

Q
t (e

Q
1:t ;m). Similarly, the interaction

encoder дSt takes the interaction embeddings eS1:t to extract the
interaction representation; hSt = дSt (e

S
1:t ;m). Here, the subscript

t of дQ and дS indicates the position of the outputs identified by
the parallel computations of the Transformer encoders. The m rep-
resents the attention mask controlling references of the attention
modules. Each Transformer encoder mostly follows the original
architecture consisting of the self-attention and feed-forward lay-
ers, but we additionally employ the modified scaled-dot product
attention function proposed by Ghosh et al. [11].

3.3 Response Prediction Framework
The RP framework predicts the learner’s response to the next ques-
tion. Therefore, the question and interaction encoders are formu-
lated as follows:

hQt+1 = д
Q
t+1(e

Q
1:t+1;mc ) and hSt = д

S
t (e

S
1:t ;mc ), (3)

wheremc denotes a causal mask having the effect of zeroing out
the attention weights of the subsequent positions. Following Ghosh
et al. [11], we also utilize an additional Transformer encoder f KR,
named a knowledge retriever, to combine the question and interac-
tion representations for the next response prediction.

Specifically, in the attention module of the knowledge retriever,
hQt+1 becomes a query, hQ1:t are keys, and h

S
1:t are the corresponding

values. That is, the knowledge retriever captures the related ques-
tions in the history and refers their response results to identify the
next response. The formal description of the knowledge retriever
is as follows:

vt+1 = f KR(q = hQt+1, k = hQ1:t , v = hS1:t ;mc ), (4)

where vt+1 ∈ Rd is the output vector, q, k, and v represent query,
key, and value, respectively. Finally, CL4KT concatenates vt+1 and
eQt+1, and this is fed into a two-layer fully-connected network fol-
lowed by a sigmoid function to generate the predicted probability
r̂t+1 ∈ [0, 1]. The loss function of the RP framework is defined as
the binary cross-entropy between rt and r̂t :

Lrp =
∑
t

−(rt log r̂t + (1 − rt ) log(1 − r̂t )).

3.4 Contrastive Learning Framework
CL aims to learn hidden representations that are close to each other
for semantically similar (positive) samples and far from those of
quite different (negative) samples. For successfully applying CL
to KT, we define three major components: (1) data augmentation,
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Figure 3: A brief illustration of augmentation methods: (a) Question mask, (b) Interaction crop, (c) Interaction permute, and
(d) Question replace methods. ↓ and ↑ denote the corresponding easier and more difficult questions, respectively.

(2) representations accounting for the learning history, and (3) a
contrastive loss.

3.4.1 Data Augmentation. Stochastic data augmentation is applied
to each student’s learning history s. We then obtain two corre-
lated views of the same history, denoted as s+1 and s+2 , which we
consider as a positive pair. We exploit the composition of several
augmentation modules. This composition reflects diverse facets of
data and makes our CL framework more robust to perturbations,
resulting in significant improvement regarding performance. Our
augmentation modules will be described in more detail in §3.5.

3.4.2 Representation for Learning History. The individual knowl-
edge acquisition process is heterogeneous due to the different na-
ture of students and tutors. In ITS, a student’s learning history
can be used to reflect the different characteristics of knowledge
acquisition. To identify the representations of the entire learning
history, we condense two types of multiple hidden representations,
hQs and hSs, provided by the Transformer encoders, дQ and дS.
Especially, when encoding the history s, we employ bidirectional
self-attentions by setting themask,m, asmb allowing all references
without zeroing out. In other words, the hidden representations
of questions and interactions making progress themselves by re-
ferring the entire history. More formally, let h̃Q1:T and h̃

S
1:T denote

the question and interaction representations with bidirectional self-
attentions:

h̃
Q
1:T = д

Q
1:T (e

Q
1:T ;mb ) h̃

S
1:T = д

S
1:T (e

S
1:T ;mb ). (5)

Finally, the representations of entire question and interaction his-
tories are defined as follows;

zQ = pool(h̃
Q
1:T ) zS = pool(h̃

S
1:T ), (6)

where pool(·) is an average pooling layer. The final outputs, zQ ∈

Rd and zS ∈ Rd , are utilized as the representations for comparison
in the CL framework.

3.4.3 Contrastive Loss. We define a contrastive loss function to
learn effective representations by pulling semantically close posi-
tive pairs together and pushing apart negative samples. For each
learning history, a positive pair, (s+1 and s+2 ), is obtained from the
data augmentation. Through the encoders, the positive pair is con-
verted into two pairs of representations: (zQ,+1 , zQ,+2 ) for question

histories and (zS,+1 , zS,+2 ) for interaction histories. Following Chen
et al. [2], we take a cross-entropy objective with in-batch negatives.
Specifically, we treat the representations of augmented samples
from other histories within the same mini-batch as negative rep-
resentations: zQ,− ∈ ZQ,− and zS,− ∈ ZS,−. Finally, contrastive
losses, LQ

cl and LS
cl , are calculated as follows;

L
Q
cl = − log

esim(z
Q,+1,zQ,+2 )

esim(z
Q,+1,zQ,+2 ) +

∑
zQ,−∈ZQ,− esim(z

Q,+1,zQ,−)
, (7)

LS
cl = − log

esim(z
S,+1,zS,+2 )

esim(z
S,+1,zS,+2 ) +

∑
zS,−∈ZS,− esim(z

S,+1,zS,−)
, (8)

where sim indicates a temperature-scaled cosine similarity function
as in Chen et al. [2].

3.5 Details of Learning History Augmentation
Due to the complexity and the unique characteristics of KT tasks,
it is challenging to directly utilize the existing data augmentation
methods in CV and NLP. Therefore, we introduce novel data aug-
mentation methods for KT to consider these issues. Specifically, we
carefully design augmentation methods so that each student’s pro-
ficiency indicated by the learning history after data augmentation
is similar to before. CL4KT uses multiple data augmentation meth-
ods to generate correlated views of the student’s learning history.
Figure 3 briefly illustrates the augmentation modules.

Question mask: Inspired by the success of masked language
models such as BERT [6], we introduce a question mask method
that replaces some questions in the original history with a special
token [mask], without changing their responses. Specifically, for each
example, we randomly mask some questions with the probability
of γmask. Properly masked learning histories can be seen as noisy
views of an original learning history. As learning progresses, CL4KT
is trained to denoise the masked learning histories based on the
context surrounding a [mask] token. Also, since this augmenta-
tion promotes estimating missing contexts, the representations can
avoid being biased by sparse educational data.

Interaction crop: Random cropping is a commonly used data
augmentation technique to create a random subset of original data.
The cropped data can help machine learning models generalize
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better by providing a local view of data. Inspired by this, our in-
teraction crop method extracts a sub-sequence from the original
history. The sub-sequence can provide local views of the entire
learning history. For each example, we extract a continuous sub-
sequence with length Lc = ⌊γcrop ∗T ⌋ given a randomly selected
starting point.

Interactionpermute: The interaction permutemethod re-orders
interactions in a sub-sequence of the original history. The ratio-
nale behind the permute module is that student’s knowledge states
represented by an interaction sequence remain similar even if the
order within the sequence is changed. Also, it is assumed that
each student’s proficiency is kept consistent within an interaction
sequence because a student does not access additional learning
materials while solving the problems. For instance, a student who
has mastered a particular knowledge concept will be able to solve
the problems relevant to the concept regardless of the order in
which they are given. For each example, we randomly shuffle the
continuous sub-sequence (sr , sr+1, ..., sr+Lp−1), which starts at a
random point r with length Lp = ⌊γperm ∗T ⌋.

Question replace1: The question replace method converts orig-
inal questions to easier or more difficult questions based on their
responses. This module aims to obtain an augmented learning his-
tory that exhibits similar knowledge states to the original learning
history, even if some questions have been replaced. To achieve
this goal, we leverage an automatically constructed relationship
between questions. Inspired by the previous pedagogical literature
[7], we exploit a knowledge structure capturing cognitive rela-
tions among the learning materials (e.g., prerequisite relations). For
simplicity, we posit that the knowledge structure is a chain-type
directed acyclic graph based on the question difficulty. To be spe-
cific, we build the question sequence that sorted in the descending
order by their probability of correct answer computed in training
data: {q(1),q(2), ...,q(M )}, whereM is the number of questions. q(1)
and q(M ) are the easiest and most difficult questions, respectively.
Note that the knowledge structure can be easily modified to more
complex structures.

Along with this, we hypothesize that a student who has mastered
complex higher-level concepts is more likely to answer the straight-
forward lower-level concepts correctly and vice versa. Intuitively
speaking, a student who has mastered the concept of Trigonometric
functions can easily solve Addition and subtraction questions. Con-
versely, a student who does not understand the concept of Addition
and subtraction will not be able to solve questions of Trigonomet-
ric functions.. Therefore, for each example, we choose interactions
randomly with the probability γrepl and replace their questions
to easier questions if the response is correct or to more difficult
questions otherwise, without changing their responses. Given the
c-th question qt = q(c) and k ∈ N+, its easier (q(c−k )) and more
difficult (q(c+k )) questions can be sampled based on the order of its
difficulty. Note that this kind of replacement does not drastically
change the student’s proficiency.

1Replacing some parts of data with other relevant ones is a popular data augmentation
technique in NLP tasks [19, 46]. In KT tasks, [21] proposes an augmentation strategy
that replaces questions with similar questions covering the same skills as the original
question without changing responses. Our approach differs from this previous study in
two aspects: 1) we exploit response information in replacing questions, possibly reflect-
ing a student’s proficiency naturally, and 2) our method does not use any predefined
skill-question relationship that is usually costly and time-consuming to prepare.

Table 1: The statistics of datasets.

Datasets #students #questions #skills #interactions

algebra05 571 173,113 112 607,014
algebra06 1,138 129,263 493 1,817,450
assist09 3,695 17,728 112 282,071
slepemapy 5,000 2,723 1,391 625,523
spanish 182 409 221 578,726
statics 333 - 1,223 189,297

3.6 Hard Negative Samples of Learning History
Aside from the data augmentations for positive samples, we pro-
duce hard negative samples by changing responses. It is well known
that the introduction of meaningful hard negatives is crucial for
learning effective representations [9, 16, 33]. In our early experi-
ments, we observe that the changes in responses, such as masking
and replacement, are not beneficial in terms of data augmentation
making positive pairs. This is because these changes in binary re-
sponse variables lead to a substantial semantic difference. Based on
this observation, we reverse responses to produce hard negative
samples. For each example, we choose interactions randomly with
the probability γneg and reverse their responses: r̃t = 1 − rt . The
representations of the hard negatives are added toZS− in Eq. (7) to
facilitate better learning. Our hard negative samples can modulate
the hardness of the CL task without increasing the batch size.

3.7 Model Learning
The overall objective function of CL4KT is defined as a linear com-
bination of the RP loss, Lrp , and the CL loss, Lcl = L

Q
cl + LS

cl :

L = Lrp + λLcl , (9)

where λ denotes the hyperparameter governs the influence of self-
supervised learning signals. During a training phase, learnable
parameters are optimized by minimizing Eq. (9).

4 EXPERIMENTS
In this section, we conduct experiments on six real-world datasets
to evaluate the proposed CL4KT framework. Specifically, we aim
to answer the following research questions. (RQ1) How does the
proposed CL4KT framework performs compared to the state-of-the-
art KT methods? (RQ2) How do different augmentation methods
and their hyperparameters affect the performance of CL4KT? (RQ3)
How does the weight λ of the CL loss impact on the performance?
Does the CL framework assist in improving existing models? (RQ4)
What is the influence of various components of CL4KT, such as
encoder architectures, augmentation methods, and hard negatives?
(RQ5) Does our CL4KT provide useful representations?

4.1 Experimental Settings
4.1.1 Datasets. We use six real-world datasets to validate the ef-
fectiveness of our model.

• algebra05 and algebra06: Algebra I 2005-2006 (algebra05)
and Bridge to Algebra 2006-2007 (algebra06) are provided
by the KDD Cup 2010 EDM Challenge [35].
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Table 2: Performance comparison of different models on six datasets in terms of AUC and RMSE. We conduct 5-fold cross
validation and report the average value. The best performance and second best performance models are denoted in bold and
underlined, respectively. ∗ and ∗∗ indicate the statistical significance with p < 0.05 and p < 0.01 compared to the best baseline
method, respectively.

Dataset Metric IRT PFA DKT DKVMN SAKT AKT CL4KT

algebra05
AUC 0.7141 0.7481 0.7636 0.7562 0.7637 0.7676 0.7891∗∗

RMSE 0.4005 0.3932 0.3921 0.3907 0.3899 0.3952 0.3815∗∗

algebra06
AUC 0.6559 0.7460 0.7589 0.7463 0.7512 0.7474 0.7733∗∗

RMSE 0.4025 0.3848 0.3820 0.3864 0.3862 0.3896 0.3791∗∗

assist09
AUC 0.6708 0.7284 0.7504 0.7475 0.7491 0.7532 0.7624∗∗

RMSE 0.4631 0.4444 0.4371 0.4375 0.4381 0.4372 0.4333∗∗

slepemapy
AUC 0.6210 0.6583 0.6986 0.7064 0.6846 0.7090 0.7218∗∗

RMSE 0.4068 0.4020 0.3978 0.3962 0.4062 0.3978 0.3926∗∗

spanish
AUC 0.6956 0.7467 0.8066 0.8027 0.8065 0.8097 0.8289∗

RMSE 0.4596 0.4428 0.4139 0.4156 0.4179 0.4177 0.4049∗

statics
AUC 0.7404 0.7489 0.7674 0.7736 0.7492 0.7872 0.7943∗

RMSE 0.4303 0.4096 0.4111 0.3975 0.4105 0.3967 0.3945∗

• assist09 [8]: The ASSISTment 2009-2010 dataset is col-
lected from the ASSISTment intelligent tutoring system.

• slepemapy [30]: This dataset comes from an online system,
slepemapy.cz, providing adaptive practice of geography facts.
We randomly sample 625, 523 interactions of 5, 000 students.

• spanish [22]: This dataset consists of records of middle-
school students practicing spanish exercises.

• statics [20]: This dataset consists of records of a college-
level engineering statics course.

For dataset preprocessing, we follow the standard practice in [10].
We discard students with less than five interactions and remove all
interactions that are not associated with a named concept. Since
questions can be tagged with multiple skills, we converted each
unique combination of skills to a new skill. Table 1 illustrates the
main characteristics of the datasets.

4.1.2 Evaluation Metrics. We perform 5-fold cross-validation for
quantitative evaluation, in which folds are split based on the stu-
dents. Additionally, we set aside 10% of the training set as a valida-
tion set. The validation set is used to tune hyperparameters as well
as to determine an early stopping point. We compare all approaches
in terms of AUC (area under the receiver operating characteristic
curve) and root mean squared error (RMSE).

4.1.3 Baselines. For comparison, we use the following baselines.
• IRT [17]: Item Response Theory (IRT) takes a form of logistic
regression with student’s ability and question’s difficulty.

• PFA [31]: Performance Factor Analysis (PFA) is also a logistic
regression model with question’s difficulty, prior successes,
and prior failures.

• DKT [32]: Deep Knowledge Tracing (DKT) is a seminal KT
method that uses a single layer LSTM.

• DKVMN [45]: Dynamic Key-ValueMemoryNetwork (DKVMN)
is a memory augmented neural network modeling individual
concepts.

• SAKT [28]: Self-Attentive model for Knowledge Tracing
(SAKT) exploits a Transformer architecture to capture long-
term dependencies between student’s learning interactions.

• AKT [11]: Context-Aware Attentive Knowledge Tracing
(AKT), a state-of-the-art method in KT, exploits context-
aware embeddings based on additional question-skill rela-
tions and a modified Transformer architecture with adaptive
attention weights computed by a distance-aware exponential
decay.

4.1.4 Implementation Details. We implement CL4KT in PyTorch
and the code is publicly available2. The embedding and hidden sizes
are fixed to d = 64 for all models. We consider the last 100 interac-
tions for each student because we focus on the recent information
essential for predicting the future. For the CL framework, we set λ
as 0.1 and tune the augmentation parameters, γmask, γcrop, γperm,
and γrepl, within the range of {0.3, 0.5, 0.7}. For hard negative sam-
ples, we tune γneg within the range of {0.1, 0.5, 1.0}. The models
are optimized by Adam [18] with a batch size of 512 and an initial
learning rate of 0.001. Early stopping strategy is applied if AUC on
the validation set does not increase for 10 epochs.

4.2 Overall Performance (RQ1)
Table 2 illustrates the overall evaluation results. In contrast to most
existing work using only AUC, our experiments use both AUC and
RMSE for a more comprehensive comparison. From the results, we
have the following observations. First, in most cases, DKT outper-
forms logistic regression models (IRT and PFA). This seems to be
due to the fact that, unlike logistic regression having limited access
to the precise temporal order of interactions, LSTM-based DKT
can naturally utilize the temporal information of students’ learning
history. In some cases, DKT is superior to SAKT, DKVMN, and
AKT, which is consistent with previous studies [11, 25, 39]. Next,

2https://github.com/UpstageAI/cl4kt
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Figure 4: Impact of the different augmentation methods
with different proportions on AUC.

a superior baseline differs depending on datasets and evaluation
metrics. In terms of AUC, AKT shows the second-best AUC value in
most datasets except algebra06. However, in terms of RMSE, the
best baseline varies across datasets. For example, DKT is superior
to other baselines in terms of RMSE in algebra05, assist09, and
spanish, but not in other datasets. When it comes to comparing
the performance of AKT and SAKT, additional question-skill rela-
tions in AKT appear to play an important role in a Transformer
architecture to capture students’ knowledge states. Finally, CL4KT
performs consistently better than all the baselines in terms of both
AUC and RMSE. Compared to other baselines, CL4KT adopts the
CL framework with domain-specific data augmentations and hard
negatives to introduce effective self-supervised signals for KT. Our
experimental results verify that the self-supervised signals play a
pivotal role in enhancing the representations of knowledge states,
resulting in better performance, even without additional inputs.

4.3 Comparison on Augmentations (RQ2)
We study how different data augmentation methods and their hy-
perparameters affect the KT performance. To analyze the effect of
each augmentation method, we use only one augmentation method
in the CL framework with varying proportion parameters, γmask,
γcrop, γperm, and γrepl, from 0.1 to 0.9. In the following, we re-
port AUC values on assist09, slepepmapy, and spanish because
these datasets represent the knowledge acquisition in different sub-
jects such as mathematics, geography, and language, respectively.
Figure 4 reveals three interesting facts.

First, we observe that CL4KT equipped with a single augmen-
tation method can outperform AKT on all datasets for all choices
of proportion parameters. This verifies that the effectiveness of an
individual augmentation method generating useful learning sig-
nals. Also, CL4KT is superior to the other cases using an individual
augmentation method on all datasets, indicating the effectiveness
of the composition of multiple augmentation methods. Second,
the most effective augmentation method differs depending on the
datasets. For example, in assist09 and slepemapy, the question
mask method is, on average, superior to other methods, while in
spanish the interaction crop method is better than others. This
result implies that the most effective augmentation varies across
datasets because each augmentation focuses on different character-
istics of learning histories. Finally, extreme values of the proportion
parameter appear to be detrimental to performance. In most cases,
the performance peaks at a particular proportion parameter and
then degrades as we increase or decrease the parameter.
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Figure 5: Performance comparison with respect to λ.

Table 3: Performance of DKT, SAKT, DKTcl, SAKTcl, and
CL4KT with an individual data augmentation. The best per-
formance is denoted in bold.

Aug. Method assist09 slepemapy spanish

None DKT 0.7504 0.6986 0.8066
SAKT 0.7491 0.6846 0.8065

Mask
DKTcl 0.7574 0.7051 0.8108
SAKTcl 0.7505 0.6904 0.8123
CL4KT 0.7617 0.7189 0.8234

Crop
DKTcl 0.7571 0.7047 0.8135
SAKTcl 0.7512 0.6879 0.8126
CL4KT 0.7610 0.7179 0.8243

Permute
DKTcl 0.7575 0.7042 0.8122
SAKTcl 0.7510 0.6884 0.8141
CL4KT 0.7609 0.7150 0.8201

Replace
DKTcl 0.7572 0.7049 0.8135
SAKTcl 0.7507 0.6875 0.8113
CL4KT 0.7611 0.7174 0.8231

4.4 Impact of Contrastive Loss (RQ3)
To analyze the impact of the CL Loss, we first examine the influ-
ence of the CL loss by varying λ in Eq. (9). As shown in Figure 5,
we observe a significant decrease in KT performance when λ in-
creased above a certain threshold in some cases. This seems to be
becauseLcl overwhelmsLrp in Eq. (9). Since our goal is to identify
hidden representations of the knowledge states that help predict
learner performance, it is required to balance between the RP and
CL frameworks.

Next, to further verify the effectiveness of the CL loss, we apply
the CL framework to the existing baselines, DKT and SAKT. We
enhance DKT and SAKT by applying the CL framework with a
single augmentation method. As shown in Table 3, we report AUC
values of three kinds of methods: 1) DKT and SAKT without the CL
loss; 2) the enhanced baselines with the CL loss (DKTcl and SAKTcl);
and 3) CL4KTwith an individual augmentation method.We observe
that, regardless of the type of augmentation, the enhanced baselines
are consistently better than their counterpart in all datasets. This
result indicates that our CL framework has the versatility that can
be applied to existing methods. On the other hand, CL4KT with
an individual augmentation outperforms the enhanced baselines,
showing that our RP framework is more effective in capturing
useful self-supervised signals.
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variants: without bidirectional encoders (\BE), without each
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without hard negative samples (\HN).
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4.5 Ablation Study (RQ4)
To verify the effectiveness of each component, we compare CL4KT
with six variants in terms of AUC: \BE replacingmb withmc in Eq.
(5) (without bidirectional encoders); \Mask, \Crop, \Perm, and
\Repl removing the corresponding augmentation; and \HN indi-
cating without hard negatives. Figure 6 shows the results revealing
the following interesting observations.

First, regarding the augmentation methods, removing each aug-
mentation method results in a performance loss. The \Repl shows
the largest performance loss on average, which shows the effective-
ness of the question replace method in discovering representations
of knowledge states. Also, we observe empirical evidence for the
effectiveness of the composition of multiple augmentations, which
is consistent with prior work [2].

Second, \BE suffers from performance deterioration, whichmeans
that considering bidirectional contexts of knowledge states can be
useful in capturing the self-supervised signals from raw data. It
is well known that, even in sequential prediction tasks, the bidi-
rectional representations can play a pivotal role in improving the
performance without information leakage [37].

Lastly, hard negative samples result in an additional benefit in
performance. The CL4KT variant without hard negatives, \HN,
suffers a moderate loss. This implies that our reverse response
method can generate meaningful negative samples modulating the
hardness of the CL framework.

4.6 Quality of Representations (RQ5)
As KT has been applied in various scenarios, it has become criti-
cal to measure the quality of representations from KT models. To
analyze the quality of representations, we provide the following

Table 4: Uniformity values of learned representations from
AKT and CL4KT. Lower numbers are better.

Uniformity Method assist09 slepemapy spanish

Question AKT -2.920 -3.210 -1.337
CL4KT -2.954 -3.226 -1.382

Interaction AKT -3.143 -3.444 -1.977
CL4KT -3.185 -3.468 -2.097

results: 1) the calibration of KT models, which is crucial for down-
stream applications such as learning resource recommendation
and adaptive learning [10]; and 2) comparison between AKT and
CL4KT in terms of uniformity [41] that is proposed to measure
the quality of representations. First, we visualize the calibration
plots to detect systematic biases of KT models by measuring the
difference between predicted probabilities and observed frequen-
cies. Figure 7 shows the different calibration results of AKT and
CL4KT. Although AKT underestimates learners when the proba-
bility of correct answers is low, CL4KT is well-calibrated and does
not reveal any severe biases. This difference shows that CL4KT
can alleviate the sparsity issue, resulting in better representations
and better predictions. Also, we observe that the composition of
multiple augmentation methods is effective for calibration. Next,
we compare AKT and CL4KT in terms of uniformity measuring
how well the embeddings are uniformly distributed. Since random
instances are required to be scattered on a hypersphere, a lower
uniformity value indicates better quality. We report the uniformity
values of representations of questions and interactions, hQ1:T and
hS1:T , respectively. Table 4 demonstrates that CL4KT outperforms
AKT on all datasets, showing that our CL framework can contribute
to learning effective representations of knowledge acquisition.

5 CONCLUSION
In this work, we present a general CL framework for KT. To con-
struct useful self-supervised signals reflecting the characteristics of
the learning histories, we carefully devise bidirectional encoders for
CL, data augmentation modules, and the use of hard negatives. Our
framework can capture more effective representations of knowl-
edge states, improving learner’s performance prediction. Extensive
experiments on real-world datasets show that our model can out-
perform the state-of-the-art methods in terms of both prediction
performance and representation quality. We also provide ablation
studies to analyze the contribution of each component.

As ITS are increasingly being deployed in educational institu-
tions around the world, a vast amount of learning data is being
collected and analyzed for adaptive and personalized education [15].
Therefore, we believe that self-supervised learning approaches such
as CL4KT, which finds useful information from inherent patterns of
data itself, can have a broader impact on technologies to innovate
teaching and learning practices.
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